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Abstract—A plane strain or plane stress configuration of an inextensible transversely isotropic linear elastic
material, with the axis of symmetry in the plane, leads to a harmonic lateral displacement field in stretched co-
ordinates. Various displacement and traction conditions lead to standard and nonstandard boundary value prob-
lems of potential theory. Examples for a rectangular plane, half-plane and infinite plate with elliptic hole, are
presented in illustration.

1. INTRODUCTION

THE MOsST simple, yet practically important, type of fibre-reinforced composite consists of
an elastic matrix in which are embedded approximately parallel fibres. When the fibres
are randomly located in the transverse cross-section, and at sufficient density, the com-
posite body is in some mean sense homogeneous and transversely isotropic about the
fibre direction. If the fibres also are elastic, then over stress ranges in which bonding re-
mains essentially intact, the composite material is elastic, and for some stress range under-
goes only infinitesimal strain. The mean response of the composite is then represented by
the response of a transversely isotropic linear elastic body; see, for example, the review
article by Hashin [1]. This description cannot predict stress partition between fibre and
matrix, and in particular the local conditions at interfaces, but will reveal regions of high
mean stress concentration where further structural support may be required.

A common feature of fibre-reinforced composites is their relatively high modulus of
extension in the fibre direction. Rogers and Pipkin [2] point out that this property allows
a simplifying approximation to the generally complex stress analysis of transversely iso-
tropic elastic bodies. They introduce an idealized theory in which the composite is assumed
to be inextensible in the fibre direction and also incompressible, and consider plane strain
in a plane parallel to the fibres. Incompressibility then implies inextensibility in the direction
normal to the fibres also, and the permitted displacement field takes a very simple form.
This idealized theory (henceforth referred to as IDT) is illustrated by treating the deflection
of a rectangular slab with fibres parallel to the axis, with one end fixed and subject to
normal side load and shear end load. The interesting predictions of IDT are that de-
formation takes place by shear in contrast to classical bending theory, as the “fixed-end”
condition ‘“‘penetrates” down the slab, and that infinite tensile (compressive) stress con-
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centrations arise at boundaries parallel and normal to fibres to balance applied shear
tractions. The interior shear-stress is restricted by the simple form of permitted displace-
ment field while the arbitrary inextensibility and incompressibility constraint stresses
depend only on equilibrium and boundary conditions. Spencer [3] shows that the same
elementary kinematics of IDT allow a plane strain bending solution of a laminated plate
in which the fibres are oblique to the plane of bending.

An interpretation and justification of these unusual predictions of IDT—surface layers
of infinite stress and stress penetration down fibres and normal lines—is provided by
Everstine and Pipkin [4]. The Airy stress function for plane strain of a transversely iso-
tropic elastic body, with the axis of symmetry in the plane, satisfies an elliptic fourth-order
equation in which the five elastic constants appear only in the form of two dimensionless
parameters ¢, and ¢,. Inextensibility is the limit ¢, » 0, and incompressibility is the limit
¢. — 0 subject to an inequality between ¢, and ¢,. Some elementary exact solutions for a
half-plane with fibres parallel or normal to the boundary, subjected to sinusoidal loads,
are obtained. Leading terms for small ¢, and ¢, reveal the boundary layers of high stress
gradient and stress penetration over a large depth, with estimates of both length scales,
and demonstrate how the corresponding IDT solutions approximate these features.
Setting &, = &, = 0 leads to a hyperbolic equation for the stress function and IDT becomes
a part of a singular perturbation approach for small ¢, ¢..

While the “nearly inextensible” approximation ¢ ~ 0 is good in many cases, the
“pearly incompressible” approximation ¢ ~ 0 does not appear to be so commonly
applicable. Furthermore, in a plane stress theory appropriate for plates, the parameter
analogous to g, is not small, even in the incompressible limit. In these cases an approximate
theory assuming only inextensibility ¢, = 0 is more relevant, and provides the appropriate
simplification to the full transverse isotropy plane theory. Singular stress layers can still
occur at boundaries parallel to fibres, showing the boundary layer present in an exact
solution, and hence pointing to difficulties which may be encountered in a direct numerical
treatment of the exact equations.

This paper develops the plane theory for an inextensible transversely isotropic elastic
material in infinitesimal strain (henceforth described as IT). As in IDT the longitudinal
displacement, parallel to the fibres, depends only on the transverse coordinate, but the
transverse displacement is harmonic in (finitely) stretched coordinates. Traction con-
ditions on boundaries parallel to fibres lead to a simple normal derivative prescription
unaffected by any singular layer associated with the shear traction, while on nonparallel
boundaries displacement and traction conditions lead to various boundary-value prob-
lems of potential theory, with one class of nonstandard form. Some closed-form solutions
can be derived but, more important, there are well established finite-element procedures
available for numerical computation of the standard problems, and modification for the
nonstandard class appears feasible. Furthermore, any boundary layer effect is not present
in this potential part of the solution.

The theory is illustrated in a number of ways. A comparison with the exact half-plane
solutions given in [4], and corresponding IDT solutions, is made for ¢ ~ 0. Two rect-
angular slab (plate) shearing problems are solved numerically, for fibres parallel to the
sides, and compared with IDT solutions, including a case of small ¢,. An infinite plate
containing an elliptic hole is treated by conformal mapping, and solutions are presented
for uniform pressure loading of the hole boundary and for uniform transverse tension at
infinity.
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2. TRANSVERSE ISOTROPY, INEXTENSIBILITY AND PLANE THEORY

Referred to rectangular Cartesian axes Ox, x,x5 with Ox, the preferred (fibre) direction,
the elastic stress—strain laws for transverse isotropy [1, 4, 5] have the two convenient forms

Oy1 = (EL+4Vsz)ell+2vaTe

vy

Ora = 204184, 2.1
Oup = 2ure,s+ {(ky—pr)e,, +2vikre }00s5
and
Ee\, =0y,—-v0,, 2ue,=0y,,
ep = 21”%—— ;—TTGW+;—I;0“ Oup; @2
where
vr _ Eulkr=pr) = dvikeur 2.3)

E; 4E krpr

Greek subscripts take the values 2, 3, and a repeated index implies summation over those
values. E;, v; and Ey, vy are the Young’s modulus and Poisson’s ratio for simple tension
in the longitudinal (fibre) direction and in a transverse direction respectively. p; , ur are
the shear moduli for simple shear in the x,-direction and in the transverse plane Ox,x;,
respectively. k; is the bulk modulus for plane strain in the transverse plane. Various other
sets of 5 independent elastic constants may be chosen [5]. Positive strain energy requires

E, >0, u >0, ur >0, kr > 0. (2.4)
Low extensibility in the fibre direction may be defined by the strong inequality
E; >» p; ; that is,

¢ = % «1, 2.5)

L

while ur, kr, E; are of order g, . ¢ is a first-order approximation to the small parameter
¢, introduced in [4). In the inextensible idealization ¢ = 0 the first of (2.1) is replaced by

e =0, 0., arbitrary, (2.6)

where the arbitrary workless constraint stress ¢,, is governed solely by equilibrium and
boundary conditions.
First consider plane strain

€33 = €33 = €3 = 0, O3 =013 = 0, (27)

with the fibres parallel to the plane. For small ¢ defined by (2.5), neglecting terms of O(¢?)
compared with unity and assuming that o, is not of greater magnitude than all other
stress components (2.1)+2.3) give the approximate relations

(kr+ur)oss = (kr—pr)oaa, (kr+ur)es; = 633,

(2.8)
2ue 1, = 043, polke+prley; = e2{(kr+ pr)oy, —2vLkro2,}.
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For equilibrium in the absence of body force the in-plane stress components are given in
terms of the Airy stress function y(x,, x,) by
011 = X,22» 012 = — X125 22 = X115 29
where ,i denotes partial differentiation with respect to x; (i = 1, 2). Strain compatibility
€122t €2211—2€51, =0, (2.10)

implies to the same approximation that

£ %2222 12121111 = 0, (2.11)
or equivalently,
0*  0*\[ o? i
Zost |5+l =0, 2.12
(8 praE PR axf)x (212)
where
2 .uL
¢t = (2.13)
kr+pr

The exact stress function equation is given in [4], but is there applied to the case of
low extensibility &, = ¢ ~ 0, together with low compressibility u;/k; ~ 0, when ¢ reduces
to a second small parameter ¢.. IDT is the limit ¢, = &, = 0 when (2.6), (2.7) and (2.1) imply

u; = uy(x,), U, = uy(x,). 0y = .“L{“i(xz)+u,2(x1)}’ (2.14)

and ¢,, is also an arbitrary constraint stress. The limit ¢ = ¢ = 0 is not a valid approx-
imation to small ¢, ¢ in (2.12) whenever the various gradients cause the ¢ and ¢ terms to
have the same magnitude as the other terms. This situation is demonstrated by the bound-
ary layer and stress penetration effects in the solutions presented in [4].

Complete measurements of all five elastic constants of fibre-reinforced materials do
not appear to be available, but there is no evidence to suggest y; /k; is small for typical
carbon—epoxy, boron—epoxy systems. Heaton [6] calculates values for fibres arranged in
square arrays at different volume concentrations, and for a boron-epoxy composite with
fibre volume fraction in the range 0-4—0-7, the parameter ¢ takes values 0-53-0-6 while ¢
takes values 0-13-0-17.

For plane stress,

33 =033 = 0,3 =0, e, = e;3 =0, (2.15)
and to the first approximation for small &, (2.2), (2.3) give
4urkress = —(kr—pr)oa,,  durkrey; = (kr+ur)os,.
2pi€1, = 045, prey, = &40, —vi032) (2.16)
Equilibrium and compatibility again require (2.9%+2.12) with ¢ replaced by ¢ defined by
22 = flkr g
Ak

Even in the incompressible limit y;/ky — 0, ¢ - 0, and in fact, for y; > py, ¢ = 0-5 and
increases as y; /kr increases from zero. The range of ¢ values from [6] is 0-64-0-67.

(2.17)
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Thus, for both plane strain and plane stress, the stress function equation (2.12) with ¢
small and c finite, typically in the range 0-5-1.0, would appear to be a commonly applicable
approximation. The corresponding inextensible limit ¢ = 0 (IT) replaces the last of (2.8)
and of (2.16) by (2.6). The displacement field then takes the form

up = uy(x). Uy = uy(xy, x,), (2.18)

with u; zero in plane strain and determined by the first of (2.16) in plane stress. Directly

from the stress—strain relations (2.8) or (2.16), the x,-component of equilibrium balance
implies that

,0%u;  0u,

ox?  oxZ

with ¢ replaced by ¢ in plane stress, while, with (2.6), the x,-component implies that

=0, (2.19)

Ju
G11 = prtlx;)—py {u,l,(xl)xl +5—x2} (2.20)

2

Here t(x,) is an arbitrary function depending only on boundary conditions, and (2.20)
assumes that stress gradients are continuously bounded. The equivalent stress function
representation is

X = Xo(X1,X2) = ppx u(xz) + f(x,), af"(x3) = ppt(xy),
200, 820 _
ox? " ox2 ox,’

but direct solution of (2.19) is more convenient. In IDT, (2.19) and (2.20) are replaced by

=0, jpu, = (2.21)

022 = /»‘L{P(xﬂ—u;(xl)xz}» 0y = I‘L{t(xz)—“'f(xz)x1}» (2.22)

where p(x,) is an arbitrary function depending only on boundary conditions.

Prescribed displacements on the boundary must be compatible with the first of (2.18),
and if not then inextensibility is not satisfied so that large stress gradients arise and the ¢
term in (2.12) is not negligible. It is shown in Section 5 that prescribed tractions on bound-
aries not parallel to fibres are compatible, but on boundaries x, = constant the functions
u;(x,) and t(x,) are constant, and ¢,,, 6,, may not both be prescribed compatible with a
solution of (2.19). The resulting shear-stress discontinuities and balancing infinite fibre-
stress gradient, as predicted along fibre and normal line boundaries in IDT, are approx-
imations to boundary layers of high stress gradient as demonstrated by the solutions in
[4]. In an infinitesimal layer at a boundary x, = const, equilibrium requires that

z
%114 15,1 = 0, (2.23)
0x,
where
006,, = X, (finite) asd — 0. (2.24)

Thus, the applied shear traction t(x,) may be discontinuous with the interior shear-stress
04, provided that the jump [a,,] is balanced by a concentrated fibre stress gradient as in
(2.23). The representation (2.20) applies only in the continuous interior solution.
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Some half-plane and rectangular plate examples are presented in the next two sections
and compared with IDT. In Section 5, the potential theory for (2.19) in stretched coordinates
is described for various classes of boundary conditions, and an infinite plate with elliptic
hole example is treated in the final section.

3. HALF-PLANE EXAMPLES

The notation x, = x, X, = y, u; = u, u, = v, etc., will henceforth be adopted for con-
venience. Solutions to four half-plane examples given by the present inextensible theory
IT, (2.8), (2.18), (2.19), (2.20) and (2.23), can be compared with the leading terms for small
¢ of the exact solutions presented in [4], and with the IDT solutions of (Z.14), (2.22).

First consider the half-plane y > 0 with fibres parallel to the boundary. For the
boundary condition

L

with g, vanishing as x —» + oo (y > 0) and u, v bounded at infinity, both IT and IDT
give for y > 0,

y =0, =0, cos(-’f), s, =0, 3.1)

=g, =0, (3.2)

u=1v=0, Oy = 0 .

yy

while the exact solution gives for small ¢ (finite ¢),
= Zoexp| =2 sin(*
Oy = . exp( La) sm( L) +0(e),
(3.3)

o,, = Ole), Oy = 0, exp(Z—;) cos(%) + O(e).

Thus there is a boundary layer of thickness Le in which the applied shear stress decays
rapidly and in which there is a concentrated tensile stress o,, represented in IT by (2.23)
and (2.24). For the boundary condition

y=0:0,,=0, o,, = —0a, cos(%), (3.4)

with o,, vanishing as x - + co(y > 0) and u, v bounded at infinity. IT gives for y > 0,
co,L

—cy x
L )(L)
X - _ 4 x
L)’ Gy aoexp( I )cos(L), (3.5)

]

u=20, v=

exp

COos

g, = —ca, exp(——L—“—)) sin

IDT gives for y > 0,

u=v=20, o
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which are the limits as ¢ — 0 of (3.5). Leading terms of the exact solution give 4, as in

(3.5), and
x c
G, =0, cos(L){c exp(—— —-ex p( o )}

ek 2

showing the boundary layer of thickness Le with rapidly varying shear-stress and con-
centrated stress g,

Now consider the half-plane x > 0 with fibres normal to the boundary. For the
boundary condition

(3.7)

x =00, =0, cos(% . o, =0, (3.8)
with u, v, 0, bounded as x — oo, IT gives for x > 0,
L —
u=0, v = __Cf;.; exp(c—; cos(% ,

o, = CO, {1 —exp(:—;)} sin(%), Gy, = —exp(——) sm( ) (3.9
O,y = 0, exp(:—;) cos(%),

u=ryv=0, Opx =0, =0, =0. (3.10)

and IDT gives for x > 0,

While (3.9) satisfies both traction conditions (3.8) it implies that 4, “penetrates” to in-
finity, ~co, sin(y/L) as x — oo. The exact solution shows, to first-order in ¢, that

- XA expl =X sinl2
Oy = cao{exp( 3 ) exp( oL }sm(L), (3.11)

so that the actual penetration depth is of order L/e. For the boundary condition

x=0i0,=0, 0, =0, cos(%), (3.12)
with u, v, o,, bounded as x — co. Both IT and IDT give for x > 0,
u=v=0, G,y =0,,=0, Oxx = —0,COS %) (3.13)
while the exact solution gives
0, = Ofe),
O, = 0, exp(_—;‘i) cos(%) + O(e), (3.14)
0, = gzﬁexp(—g cos(% + 0(e?),

showing the o, penetration depth of order L/e.
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4. RECTANGULAR PLATE EXAMPLES

Consider a rectangular plate or slab with cross-section 0 < x < [, 0 < y < h, so that
fibres are parallel to the side Ox, subject to plane strain or plane stress loading. Let one end
be fixed and the other end subjected to shear traction only; thus,

x=0u=0v=0; x =10, =0, Opp = — (). 4.1)
It follows from the first of (4.1) that in both IT and IDT,

u=0, (4.2)
and hence by the third of (4.1) that

0
IDT o, = ut(y) = 0:  1T:t(y) = (a—;) . (4.3)
x=!
Consider two simple side conditions

(@) y=0:0,, =0,, =0, y=ho,=0,=0,

(4.4)
(b)y=0:0,,=0,=0, y=hu=v=
The IDT interior solution of (a) [2] is simply
Fx F
v= —#Lh’ v = T Oux = 0,, =0 (4.5)
where
h
F =f w(y)dy. (4.6)
0

The shear-stress jumps on y = 0, h are balanced by concentrated compressive and tensile
g, respectively, as defined in (2.23), (2.24), and if 7(y) does not have the uniform dis-
tribution F/h then the o,, jump on x = [ is similarly balanced by concentrated o, in
normal lines. In practice the inextensibility approximation e;; = 0 (or high modulus E;)
may not be appropriate for large compressive stress in the fibre direction, particularly if
the matrix largely supports the compressive stress. For (b) the IDT interior solution is
simply

v =0, 0y, =0y, =0, =0, 4.7

with concentrated 6,, on x = I.
In terms of the stretched coordinates

X = x, Y = ¢y, (4.8)
the IT displacement v, by (2.19), becomes harmonic:

2V 92
VIX,Y) = uvix,y), VV=-—s i
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From the boundary conditions (4.1), (4.4),

oV (Yo
X = "ax” P
oV
(a) Y=0, ch:a—Y =0, (o,,] #0, (4.10)
(b) Y=0:6—V=0, [0,,] # 0, Y=ch:V =0,

oY

implying boundary layers on y = 0, h for (a) and on y = 0 for (b). Note that in IDT (b)
there is a boundary layer on x = I associated with normal line stress, but no boundary
layer on y = 0.

These potential problems have been solved numerically by standard finite element
methodst for various values of ¢ and the aspect ratio a = h/l. The end tractions for the
side conditions (a) and (b) of (4.4), (4.10) are chosen to be respectively

2F F
(@) ©(y) = yria (b) w(y) = W (4.11)

As illustration the solutions are presented for the case a = 1 (square plate) with ¢ = 1
and ¢ = 0-1. The small value is chosen to demonstrate the approach to the IDT solutions
asc - 0.

Figure 1 shows the displacement v on y = 0 and y = h in problem (a) for ¢ = 1 and
¢ = 0-1, with the latter not distinguishable from the linear IDT profile (4.5), andony =0
in problem (b). For the latter the ¢ = 0-1 solution differs significantly from the vanishing
IDT displacement near the sheared end.

\D\\ I :.—\\
\‘D\\D\ cs Ol \.\
T ~a
~~ {b) y=0
\.\ N y \\
\0 ~o \
\ AL \
o8- A\.\ \D\\ —\-
c=| ~0
& {a) \A ~0 T ~J
3 CN T
", or
y=h cs0l
\A

FIG. 1. Transverse displacement for side conditions (a) and (b).

+ 1 am indebted to Dr. M. Baligh of Systems, Science and Software, Inc., for performing the computations.
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Figure 2 shows the shear-stress o, in problem (a) on y/h = 0-05 and 0.95, for ¢ = |
and ¢ = 0-1, and shows the uniform IDT distribution for comparison. The (normal) bound-
ary layer near x = [ for ¢ = 0-1, approximated by the jump in IDT, is evident. The same
comparisons are made in Fig. 3 for problem (b).

Figure 4 shows the transverse stress ¢, on x/I = 0-95, near the sheared end, for problem
(a), for ¢ = 1 and ¢ = 0-1. The latter shows the large values of ¢,, and dg,,/dy arising to
balance the nonuniform applied shear traction. The same comparisons are made in
Fig. 5 for problem (b). Note the higher values of g, arising due to the fixed side condition
when c¢ is small, but not for ¢ = 1.

5. POTENTIAL THEORY

The previous two sections have demonstrated by examples the occurrence of con-
centrated fibre stress and discontinuous shear-stress at boundaries parallel to fibres when
tractions are prescribed. On boundary sections y = constant the arbitrary functions u(y)

x/{

o] 0-5 |
[ ¢
e
s
c=| ol /
L] ¥
- ~=0:05/
{ ]
‘t ././
A . h \or s
v lf— A A T -~
< A ———
\
A—s ;.0-95 \
esl A \
\ \
8,
1 N

F1G. 2. Shear stress for side conditions (a).

x/
0] 05 |
S S S

—0'5}-—— [ L

hoy, /IF

|

Fi1G. 3. Shear stress for side conditions (b).
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\ / /
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\\ .\.\Os-l—o———./. //
N B /
' \ /T
u\; \R /o/
s \ /
\\ //
2 h\ /p’ —
\\ //
.
RN o~ i-glo - g
-3 |

F1G. 4. Transverse stress on x/l = 0-95 for side conditions (a).

and t(y) become constants, and two independent traction distributions are an over-
prescription (in general) for the elliptic v(x, y) equation (2.19). Similarly, displacement
conditions incompatible with a field u(y) will induce high fibre stress in some region and
some fibre extension of O(e), requiring a perturbation approach to a compatible solution.

I
/
/
7
/
/
/c{
/
s o/ ]
X //
bl
< c-0~l/cf
/
4
/
/
P
//
7 v
/ e
d Pad
/ cel _o"
&./.{——.’.’.’.j
o] o5 |
yh

Fi1G. 5. Transverse stress on x/I = 095 for side conditions (b).
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Domains with boundaries parallel to fibres only at discrete tangent points are now
considered. Under the (nonconformal) transformation (4.8) the transverse displacement
v = V(X, Y)is harmonic (4.9). Also write

UY) = uly).  T(Y) = ty). (5.1)

Details are presented for a finite domain D convex to fibre lines Y = constant as shown
in Fig 6. For boundaries intersecting a section of fibre lines 2r times the functions U(Y),
T(Y) can be r-valued in that range, continuous with U(Y), T(Y) outside the range. The
boundary C of the domain D, Fig. 6, can be divided into left- and right-hand sections,
C = C, u Cg where

C:X =X, Y), CrX=XgY), Y,<Y<Y, (5.2)

and X, is continuous with X at Y, and Y.

F1G. 6. Body domain in stretched coordinates.

The inclination ¢ of the unit outward normal N on C to the X-axis is related to 6,
the inclination of the normal on the body boundary to the x-axis, by

cotp =ccotf,  cos¢ = ccosB(c? cos® B+sin? 6)" L. (5.3)
Two useful identities are
c?sin? g +cos? @ = c*(sin? 6+ cos? 0)(c? cos? §+sin? §) L. (5.4)

The tractions p, 1., y;t, on the body boundary are related to V by

s Y
J. t, ds = V+cXU’(Y)—c“'f T(Y)dy, (5.5)

. oV
(c? sin? @ +cos? @)tt, = S Tecos oU'(Y), (5.6)
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where s measures arc length (in the sense of S, Fig. 6) along the body boundary. Equivalent
to (5.5) is

(c? sin? @ +cos? @)t = c%{ V+cXU'(Y)}+cos oT(Y). (5.7)
From the self-equilibration of the boundary tractions,
ov av
21 ds = —ds=0, 5.8
c 0S ds =90, cON 8)
as required. The stress components on D are expressed by
ov
= T(Y)=c2XU"(Y)—c—
axx ”L{ ( ) 4 (Y) caY}’
_, oV , %
G,y =¢C ‘uLé?, O,y = Hi {CU(Y)+6—)(}' (5.9)

In view of the functions U(Y), T(Y) uniform in X it is helpful to describe boundary
conditions with explicit reference to C; and Cr. When different conditions are applied on
C, and Cy there is a corresponding problem with C, and Cy interchanged. Pairing of
conditions on C; and Cj applies also to sub-sections of C, and Cy over a common range
of Y. It is supposed that whenever the displacement u is applied on both C; and Cpona
common range of Y, it is compatible with the inextensibility requirement u = U(Y).
Following is a classification of various prescribed boundary conditions which in principle
determine U(Y), T(Y) and harmonic V(X, Y):

Uand VonC, t,onCyp, (5.10)
Uandt,onC, t.onCy, (5.11)
UonC,Von(Cy, tyand t,on Cg, (3.12)
Vandt, onC, (5.13)

t.onC, VonC,, t,on Cpg, (5.14)
t,and ¢, on C. (5.15)

Conditions (5.10)5.13) determine the solution V of (4.9) and T is then found from
(5.5) for the first three, and U, T are determined by (5.5) given ¢, on C; and Cg (5.13).
Given (5.14), V and t, on C relates U and T by (5.5), then ¢, on Cg expresses U and T in
terms of V on Cg. Consequently, t, on Cg, by (5.6), prescribes a combination of ¢V/ON
and Von Cg, and Vis given on C; by (5.14). That is, writing

J t,ds’ = gi(Y), f t,ds’ = gg(Y),

Cr Cr

81(Yo) = ga(Yo) = 0, g(Yy) = gp(Y1) = g(1)), (5.16)
and denoting ¥ on C, and Cyg by V,(Y), Vi(Y), respectively,
cAXR(Y) = X(YNIU'(Y) = gp(Y)—go(Y)— Vr(Y)+ Vi (Y),

Y
C_I{XR(Y)"XL(Y)}J T(Y)dY' = X(Y){Vi(Y)—gu(Y)} — X (V) {Va(Y)—gr(Y)}, (5.17)
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and hence on Cg, by (5.6),

av

X )—

(Xe= XDz

where V, denotes V evaluated at the same value of Y on C, . The conditions (5.10)(5.14)
lead to standard potential problems for V.
Finally, there are the pure traction conditions (5.15). Writing

fuY)onC,
Se(Yyon Cg’

and denoting ¢ and 8V/0N on C,, Cr by ¢, 0V, /ON and @z, dVi/ON, respectively, (5.5)
and (5.6) become

—cos @V = (X~ X)(c? sin? ¢ +cos? @)tt,—cos p{gr—g,+ V.}. (5.18)

(c? sin? @ +cos? )it = { (5.19)

Y
V, = gQ—cXQU'+c-1f T(Y')dY’

Q0=LR (5.20)
oV, ,
N fo—ccos U
By the first of (5.20) with Q@ = L and R, the relations (5.17) for U, T are again obtained.

Hence, eliminating U’ in the second of (5.20),

v —
CL:(XR—XL)a—ﬁ+COS oV~ Vg) = (Xp— X 1) fL+c0s 0(gL—gr)
(5.21)

av _
CRi(XR_XL)EV'—COS o(V—=V) = (Xg—X ) fr+cos @(g,—gg)

where Vg denotes V evaluated on Cy at the same Y value, and each f,, g, are evaluated
at the current value of Y. Note that cos ¢ < O on C;, >0 on C,. Equation (5.21) is a non-
standard potential problem. At Y = Y, and Y;,cosp = 0, Xz = X, g, = gz, and (5.21)
has continuous limits. It is straightforward to prove the existence of a unique solution
V for the boundary conditions (5.18) and (5.21) when C is a circle, but no proof has been
found for general C.
The traction problem (5.21) simplifies for boundaries C (and hence the body boundary)
symmetric about a normal line, say X = 0. Then
X.=—Xi, COS ¢ = —COS g, sin @; = sin @g. (5.22)
Consider the solution as a sum of even and odd parts in X, V = ¥+ V. Then 65//0N is
even and af’//aN is odd. The C; and C, conditions for V are compatible with f, = f; = }

(t,even)and g, = g = § (t, odd), that is, symmetric loading, giving on C
=, (5.23)
a standard potential problem. By (5.17),

Y
U(Y) =0, f T(Y')dY' = c{V(Y)—g(Y)}. (5.24)
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V is the solution for t,odd, —f; = fr = }, and t, even which implies g(Y,) = O (self-
equilibration on C; and Cy separately), and hence —g; = gz = § Thus (5.21) becomes

[}

ov 0 o °
C,_:XRa—A—]+cos oV = — Xgf—cos g,

s (5.25)
Cr :XRm—cos @V = Xgf—cos @g,
a standard problem, and (5.17) gives
cXf(NU(Y) = g(Y)= VoY), T(Y)=0. (5.26)

6. INFINITE PLATE WITH ELLIPTIC HOLE

If the domain D extends to unbounded X then by (5.9) the stress o,, is bounded only
if U"(Y) = 0:U = U,Y,and if it extends also to unbounded Y then bounded displacement
requires U = 0. The class of inextensible solutions on infinite domains is therefore re-
stricted, but includes the symmetric traction problems. As illustration, two symmetric
loading problems for an infinite plate with an elliptic hole are solved by conformal

mapping.
Figure 7 shows an elliptic boundary

X = acos w, y = bsin w, -7 < w<m, (6.1)
and the elliptic boundary C under the transformation (4.8):
X = Acosw, Y = Bsin w, A=a, B = cb. 6.2)
Introducing the complex variables z = X +iY and w, the conformal mapping
z=4A+Bw+iA-Bw™!, (A+Bw = z+{z2—(4*-B?)}}, (6.3)

F1G. 7. Elliptic hole boundary and transformation.
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maps the exterior D of the ellipse (6.2) onto the exterior of the unit circle w = ¢'“. An
analytic function Q(z) on D maps into an analytic function Q(w) on |w| > 1 and the har-
monic function ¥(X, Y) can be expressed as

V(X,Y) = Im[Q(z)] = Im[Q(w)]. (6.4)
The stress expressions (5.9) can then be written
_ . dw — . dw
co,,+io,, = uLQ’(w)-a;. Oy = ,uL{T(Y)—c Re[ﬂ’(w)g]}, (6.5)
in the symmetric case U = 0.
On the boundary w = ¢/®,
dz s L
— = ¢ "“(Bcosw+id sin w), (6.6)
dw
e = —12—:}(3 cos w+iA sin w), 6.7)
i !
v ooV ldw| . .
L == e ('), 6.8
o5 laN Tl @l eeE) (©8)

Here, in the symmetric case U = 0, t, odd, direct from (5.7),
B cos wT(B sin w) = t,B cos w+ct A sin w+ ¢ Re[e“Q'(e'?)], (6.9)
for —n/2 < @ < 7/2, and the boundary condition (5.22) becomes
Im[e* Q) (e')] = ct,A sin w~t,B cos w, (6.10)

onw = € (—n < w < n), where u;t,, u.t, are the normal and tangential tractions on
the hole boundary. Here ¢, is even, and ¢, is odd, in x. Note also that

gé.,%ma) as w — 0. 6.11)

By (6.9), T(Y) is generally nonzero in —B < Y < B and so by (6.5) the fibre stress o,
penetrates to infinity in the + X-direction in the “influence strip” of the hole boundary.
Requiring 6,, - 0as X —» oo in|Y| > B implies T(Y) = 0in |Y| > B and hence T(Y),
o, may be discontinuous on Y = + B. Such discontinuities can be regarded as approxi-
mations to narrow strips of high o, gradient in the y-direction.
Consider first uniform pressure loading of the hole boundary with vanishing shear
and transverse stress at infinity :
Uit, = —p, t,=0; Ory» Oy 0 S W o 0. (6.12)

S

The latter imply that Q'(w) — 0 as w — c0. Assuming a Laurent expansion for Q(w), (6.10)
shows trivially that

DcA

Qw) = .
Hw

(6.13)
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From (6.9)
. T(Bsinw) = —p(1—c*A/B), —-n/2 < w < w2, (6.14)

which is uniform and nonzero, so that stress penetration does occur. The displacement
and stresses are obtained from (6.4), (6.5). In particular, on the hole boundary w = ¢'“,

U = pcAsin w = pcya/b, (6.15)
. pcA{B cos? w— A sin* w)—i(A + B) sin w cos w}
€Ty +10sy = B? cos® w+ A% sin® @ ' (6.16)
2 A 2A(B cos? w— A sin?
o = —p|1-CA| P ABeos” v Asin” w) (6.17)
B B* cos® w+ A sin“ w
The circumferential stress o, = 0,,+0,,+ p becomes
A A(1 —c?*)(A+ B)sin?
o, = P4 Al A+ B)sin ol (6.18)
B B*cos* w+ A”sin“ w

For a circular hole A =1, B = ¢ and 0 < ¢ < 1, g, decreases monotonically from
p/c(>0) to —p(1 —c~c?)(<0) as w increases from 0 to /2, with symmetric values in the
other quadrants. Compare the solution o, = p for an isotropic plate, obtained here when
¢ = 1. For small ¢, o, has a high tensile value at & = 0 and is compressive at w = 7/2,
but o, » —p (all w # 0, m) as ¢ — 0, showing the small section of high o, gradient near
w = 0, n for small c.

Next consider zero boundary traction and uniform transverse tension at infinity:

t,=t,=0; 6,,—~ F, o, —0 asw— o0 (6.19)

For these conditions

Qw) = %‘ﬂ;—) w—&), (6.20)
and
u. T(Bsin w) = Fc*(1+ A/B), —7/2 < w < n/2. (6.21)
On the hole boundary
uv = Fe(A+ B)sin w = Fcy(a+ cb)/b, (6.22)

_ Fe(A+B)cos w(Bcos w—iA sin )

o , 23
€0y + 104, B?cos?> w+ A%sin? w (6.23)
__ Fc(A+B) Fc*(A+B)Bcos’ 0 (6.24)
xx B B?cos’w+A?sin? @’ ’
_ F(A+ B)(B? cos® w+c*A? sin® w) 625)
s B(B? cos? w+ A? sin? w) )

For the circular hole o, decreases from F(1+c)/c to Fe(l +¢) as w increases from 0
to /2, when 0 < ¢ < 1, with symmetric behaviour in the other quadrants. For ¢ = 1,
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6., = 2F. Compare the maximum tensile value F(1+c)/c at w = 0 with the isotropic
plate result 3F. As ¢ — 0 (w # 0, n), o, ~ Fc cosec” w.

Note

I have recently been shown a manuscript entitled “Plane Strain and Generalised Plane
Stress Problems for Fibre-Reinforced Materials” by A. H. England, J. E. Ferrier and
J. N. Thomas, Department of Theoretical Mechanics, University of Nottingham, submitted
to the Journal of the Mechanics and Physics of Solids. The transverse displacement
equations (2.19) and (4.9) are derived under the same assumptions, and in illustration
some solutions for the infinite plane, half plane, and infinite strip are obtained, and com-
pared with the IDT solutions in the limit ¢ — 0.
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AGeTpakT—OuepTanue MIockod aehoOpMaLMH MAM TLIOCKOrO HANPSXEHWs A HEPacTAKUMAEMOro,
NOIIEPEYHO H3OTPOITHOTO JIMHEHHOrO, YNIPYroro Marepuana, ¢ oceli CHMMETPKHH B IIOCKOCTH, NPHBOANT K
rapMOHHMYECKH MOMEPEYHOMY MOJIIO fIePeMELLIEHHI B yAIMHHEHHBIX KOOpAKHaTaX. Pa3uue ycnobus nepeme-
UWIEHHI W TATOBBIX YCUIIMHA CBOAATCA K CTAHAAPTHBIM M HECTAHAAPTHLIM KPAeBbIM 3a1a4aM TEOPHH MOTEH-
uyuana. Jns wntocTpauuu, JaroTcs NPUMEPBE QIS NPAMOYTOJIBHOMN ILIOCKOCTH, MONYILUIOCKOCTH U Gecko-
HEYHOI NMNACTHHKH C WUTUIITHYECKUM OTBEPCTBUEM.



